Consistency Flow Model Achieves One-step Denoising Error Correction Codes (2512.01389v1)
Abstract: Error Correction Codes (ECC) are fundamental to reliable digital communication, yet designing neural decoders that are both accurate and computationally efficient remains challenging. Recent denoising diffusion decoders with transformer backbones achieve state-of-the-art performance, but their iterative sampling limits practicality in low-latency settings. We introduce the Error Correction Consistency Flow Model (ECCFM), an architecture-agnostic training framework for high-fidelity one-step decoding. By casting the reverse denoising process as a Probability Flow Ordinary Differential Equation (PF-ODE) and enforcing smoothness through a differential time regularization, ECCFM learns to map noisy signals along the decoding trajectory directly to the original codeword in a single inference step. Across multiple decoding benchmarks, ECCFM attains lower bit-error rates (BER) than autoregressive and diffusion-based baselines, with notable improvements on longer codes, while delivering inference speeds up from 30x to 100x faster than denoising diffusion decoders.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.