Inferring Dynamic Hidden Graph Structure in Heterogeneous Correlated Time Series (2512.01301v1)
Abstract: Modeling heterogeneous correlated time series requires the ability to learn hidden dynamic relationships between component time series with possibly varying periodicities and generative processes. To address this challenge, we formulate and evaluate a windowed variance-correlation metric (WVC) designed to quantify time-varying correlations between signals. This method directly recovers hidden relationships in an specified time interval as a weighted adjacency matrix, consequently inferring hidden dynamic graph structure. On simulated data, our method captures correlations that other methods miss. The proposed method expands the ability to learn dynamic graph structure between significantly different signals within a single cohesive dynamical graph model.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.