Papers
Topics
Authors
Recent
2000 character limit reached

nnMobileNet++: Towards Efficient Hybrid Networks for Retinal Image Analysis (2512.01273v1)

Published 1 Dec 2025 in cs.CV

Abstract: Retinal imaging is a critical, non-invasive modality for the early detection and monitoring of ocular and systemic diseases. Deep learning, particularly convolutional neural networks (CNNs), has significant progress in automated retinal analysis, supporting tasks such as fundus image classification, lesion detection, and vessel segmentation. As a representative lightweight network, nnMobileNet has demonstrated strong performance across multiple retinal benchmarks while remaining computationally efficient. However, purely convolutional architectures inherently struggle to capture long-range dependencies and model the irregular lesions and elongated vascular patterns that characterize on retinal images, despite the critical importance of vascular features for reliable clinical diagnosis. To further advance this line of work and extend the original vision of nnMobileNet, we propose nnMobileNet++, a hybrid architecture that progressively bridges convolutional and transformer representations. The framework integrates three key components: (i) dynamic snake convolution for boundary-aware feature extraction, (ii) stage-specific transformer blocks introduced after the second down-sampling stage for global context modeling, and (iii) retinal image pretraining to improve generalization. Experiments on multiple public retinal datasets for classification, together with ablation studies, demonstrate that nnMobileNet++ achieves state-of-the-art or highly competitive accuracy while maintaining low computational cost, underscoring its potential as a lightweight yet effective framework for retinal image analysis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.