Papers
Topics
Authors
Recent
2000 character limit reached

A Comparative Study of Machine Learning Algorithms for Electricity Price Forecasting with LIME-Based Interpretability (2512.01212v1)

Published 1 Dec 2025 in cs.LG

Abstract: With the rapid development of electricity markets, price volatility has significantly increased, making accurate forecasting crucial for power system operations and market decisions. Traditional linear models cannot capture the complex nonlinear characteristics of electricity pricing, necessitating advanced machine learning approaches. This study compares eight machine learning models using Spanish electricity market data, integrating consumption, generation, and meteorological variables. The models evaluated include linear regression, ridge regression, decision tree, KNN, random forest, gradient boosting, SVR, and XGBoost. Results show that KNN achieves the best performance with R2 of 0.865, MAE of 3.556, and RMSE of 5.240. To enhance interpretability, LIME analysis reveals that meteorological factors and supply-demand indicators significantly influence price fluctuations through nonlinear relationships. This work demonstrates the effectiveness of machine learning models in electricity price forecasting while improving decision transparency through interpretability analysis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.