Papers
Topics
Authors
Recent
2000 character limit reached

Real-Time On-the-Go Annotation Framework Using YOLO for Automated Dataset Generation (2512.01165v1)

Published 1 Dec 2025 in cs.CV, cs.AI, and cs.RO

Abstract: Efficient and accurate annotation of datasets remains a significant challenge for deploying object detection models such as You Only Look Once (YOLO) in real-world applications, particularly in agriculture where rapid decision-making is critical. Traditional annotation techniques are labor-intensive, requiring extensive manual labeling post data collection. This paper presents a novel real-time annotation approach leveraging YOLO models deployed on edge devices, enabling immediate labeling during image capture. To comprehensively evaluate the efficiency and accuracy of our proposed system, we conducted an extensive comparative analysis using three prominent YOLO architectures (YOLOv5, YOLOv8, YOLOv12) under various configurations: single-class versus multi-class annotation and pretrained versus scratch-based training. Our analysis includes detailed statistical tests and learning dynamics, demonstrating significant advantages of pretrained and single-class configurations in terms of model convergence, performance, and robustness. Results strongly validate the feasibility and effectiveness of our real-time annotation framework, highlighting its capability to drastically reduce dataset preparation time while maintaining high annotation quality.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.