Papers
Topics
Authors
Recent
2000 character limit reached

CodeDistiller: Automatically Generating Code Libraries for Scientific Coding Agents (2512.01089v1)

Published 30 Nov 2025 in cs.AI

Abstract: Automated Scientific Discovery (ASD) systems can help automatically generate and run code-based experiments, but their capabilities are limited by the code they can reliably generate from parametric knowledge alone. As a result, current systems either mutate a small number of manually-crafted experiment examples, or operate solely from parametric knowledge, limiting quality and reach. We introduce CodeDistiller, a system that automatically distills large collections of scientific Github repositories into a vetted library of working domain-specific code examples, allowing ASD agents to expand their capabilities without manual effort. Using a combination of automatic and domain-expert evaluation on 250 materials science repositories, we find the best model is capable of producing functional examples for 74% of repositories, while our downstream evaluation shows an ASD agent augmented with a CodeDistiller generated library produces more accurate, complete, and scientifically sound experiments than an agent with only general materials-science code examples.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.