Papers
Topics
Authors
Recent
2000 character limit reached

Med-CRAFT: Automated Construction of Interpretable and Multi-Hop Video Workloads via Knowledge Graph Traversal (2512.01045v1)

Published 30 Nov 2025 in cs.AI

Abstract: The scarcity of high-quality, logically annotated video datasets remains a primary bottleneck in advancing Multi-Modal LLMs (MLLMs) for the medical domain. Traditional manual annotation is prohibitively expensive and non-scalable, while existing synthetic methods often suffer from stochastic hallucinations and a lack of logical interpretability. To address these challenges, we introduce \textbf{\PipelineName}, a novel neuro-symbolic data engineering framework that formalizes benchmark synthesis as a deterministic graph traversal process. Unlike black-box generative approaches, Med-CRAFT extracts structured visual primitives (e.g., surgical instruments, anatomical boundaries) from raw video streams and instantiates them into a dynamic Spatiotemporal Knowledge Graph. By anchoring query generation to valid paths within this graph, we enforce a rigorous Chain-of-Thought (CoT) provenance for every synthesized benchmark item. We instantiate this pipeline to produce M3-Med-Auto, a large-scale medical video reasoning benchmark exhibiting fine-grained temporal selectivity and multi-hop logical complexity. Comprehensive evaluations demonstrate that our automated pipeline generates query workloads with complexity comparable to expert-curated datasets. Furthermore, a logic alignment analysis reveals a high correlation between the prescribed graph topology and the reasoning steps of state-of-the-art MLLMs, validating the system's capability to encode verifiable logic into visual-linguistic benchmarks. This work paves the way for scalable, low-cost construction of robust evaluation protocols in critical domains.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.