Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Modal AI for Remote Patient Monitoring in Cancer Care (2512.00949v1)

Published 30 Nov 2025 in cs.LG and cs.AI

Abstract: For patients undergoing systemic cancer therapy, the time between clinic visits is full of uncertainties and risks of unmonitored side effects. To bridge this gap in care, we developed and prospectively trialed a multi-modal AI framework for remote patient monitoring (RPM). This system integrates multi-modal data from the HALO-X platform, such as demographics, wearable sensors, daily surveys, and clinical events. Our observational trial is one of the largest of its kind and has collected over 2.1 million data points (6,080 patient-days) of monitoring from 84 patients. We developed and adapted a multi-modal AI model to handle the asynchronous and incomplete nature of real-world RPM data, forecasting a continuous risk of future adverse events. The model achieved an accuracy of 83.9% (AUROC=0.70). Notably, the model identified previous treatments, wellness check-ins, and daily maximum heart rate as key predictive features. A case study demonstrated the model's ability to provide early warnings by outputting escalating risk profiles prior to the event. This work establishes the feasibility of multi-modal AI RPM for cancer care and offers a path toward more proactive patient support.(Accepted at Europe NeurIPS 2025 Multimodal Representation Learning for Healthcare Workshop)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.