Papers
Topics
Authors
Recent
2000 character limit reached

DeformAr: Rethinking NER Evaluation through Component Analysis and Visual Analytics (2512.00938v1)

Published 30 Nov 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Transformer models have significantly advanced NLP, demonstrating strong performance in English. However, their effectiveness in Arabic, particularly for Named Entity Recognition (NER), remains limited, even with larger pre-trained models. This performance gap stems from multiple factors, including tokenisation, dataset quality, and annotation inconsistencies. Existing studies often analyze these issues in isolation, failing to capture their joint effect on system behaviour and performance. We introduce DeformAr (Debugging and Evaluation Framework for Transformer-based NER Systems), a novel framework designed to investigate and explain the performance discrepancy between Arabic and English NER systems. DeformAr integrates a data extraction library and an interactive dashboard, supporting two modes of evaluation: cross-component analysis and behavioural analysis. The framework divides each language into dataset and model components to examine their interactions. The analysis proceeds in two stages. First, cross-component analysis provides systematic diagnostic measures across data and model subcomponents, addressing the "what," "how," and "why" behind observed discrepancies. The second stage applies behavioural analysis by combining interpretability techniques with token-level metrics, interactive visualisations, and representation space analysis. These stages enable a component-aware diagnostic process that detects model behaviours and explains them by linking them to underlying representational patterns and data factors. DeformAr is the first Arabic-specific, component-based interpretability tool, offering a crucial resource for advancing model analysis in under-resourced languages.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.