Papers
Topics
Authors
Recent
2000 character limit reached

Elastic Mixture of Rank-Wise Experts for Knowledge Reuse in Federated Fine-Tuning (2512.00902v1)

Published 30 Nov 2025 in cs.DC

Abstract: Federated fine-tuning offers a promising solution for adapting LLMs to downstream tasks while safeguarding data privacy. However, its high computational and communication demands hinder its deployment on resource-constrained devices. In this paper, we propose SmartFed, a resource-efficient federated fine-tuning framework. SmartFed intelligently reuses knowledge embedded in existing LoRA modules, eliminating the need for expensive training from scratch when adapting LLMs to new tasks. To effectively exploit this knowledge and ensure scalability, we introduce the Mixture of Rank-Wise Experts (MoRE). MoRE decomposes LoRA modules into fine-grained rank-level experts. These experts are selectively activated and combined based on input semantics and resource budgets. Moreover, to optimize resource utilization, we present the Elastic Expert Quota Allocation (EEQA). EEQA adaptively allocates expert capacity across parameter matrices based on their contribution to model performance, focusing computing resources on the critical experts. Extensive evaluations across multiple benchmarks demonstrate that SmartFed significantly outperforms existing methods in model performance and training efficiency.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.