Papers
Topics
Authors
Recent
2000 character limit reached

Light-Weight Benchmarks Reveal the Hidden Hardware Cost of Zero-Shot Tabular Foundation Models (2512.00888v1)

Published 30 Nov 2025 in cs.LG and cs.AI

Abstract: Zero-shot foundation models (FMs) promise training-free prediction on tabular data, yet their hardware footprint remains poorly characterized. We present a fully reproducible benchmark that reports test accuracy together with wall-clock latency, peak CPU RAM, and peak GPU VRAM on four public datasets: Adult-Income, Higgs-100k, Wine-Quality, and California-Housing. Two open FMs (TabPFN-1.0 and TabICL-base) are compared against tuned XGBoost, LightGBM, and Random Forest baselines on a single NVIDIA T4 GPU. The tree ensembles equal or surpass FM accuracy on three datasets while completing full-test batches in <= 0.40 s and <= 150 MB RAM, using zero VRAM. TabICL achieves a 0.8 percentage-point gain on Higgs but requires roughly 40,000 times more latency (960 s) and 9 GB VRAM. TabPFN matches tree-model accuracy on Wine and Housing but peaks at 4 GB VRAM and cannot process the full 100k-row Higgs table. These results quantify the substantial hardware-versus-accuracy trade-offs in current tabular FMs and provide an open baseline for future efficiency-oriented research.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.