Hybrid-DMKG: A Hybrid Reasoning Framework over Dynamic Multimodal Knowledge Graphs for Multimodal Multihop QA with Knowledge Editing (2512.00881v1)
Abstract: Multimodal Knowledge Editing (MKE) extends traditional knowledge editing to settings involving both textual and visual modalities. However, existing MKE benchmarks primarily assess final answer correctness while neglecting the quality of intermediate reasoning and robustness to visually rephrased inputs. To address this limitation, we introduce MMQAKE, the first benchmark for multimodal multihop question answering with knowledge editing. MMQAKE evaluates (1) a model's ability to reason over 2-5-hop factual chains that span both text and images, including performance at each intermediate step, and (2) robustness to visually rephrased inputs in multihop questions. Our evaluation shows that current MKE methods often struggle to consistently update and reason over multimodal reasoning chains after knowledge edits. To overcome these challenges, we propose Hybrid-DMKG, a hybrid reasoning framework built on a dynamic multimodal knowledge graph (DMKG) to enable accurate multihop reasoning over updated multimodal knowledge. Hybrid-DMKG first uses a LLM to decompose multimodal multihop questions into sequential sub-questions, then applies a multimodal retrieval model to locate updated facts by jointly encoding each sub-question with candidate entities and their associated images. For answer inference, a hybrid reasoning module operates over the DMKG via two parallel paths: (1) relation linking prediction, and (2) RAG reasoning with large vision-LLMs. A decision module aggregates evidence from both paths to select the most credible answer. Experimental results on MMQAKE show that Hybrid-DMKG significantly outperforms existing MKE approaches, achieving higher accuracy and improved robustness to knowledge updates.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.