Quantum-Inspired Spectral Geometry for Neural Operator Equivalence and Structured Pruning (2512.00880v1)
Abstract: The rapid growth of multimodal intelligence on resource-constrained and heterogeneous domestic hardware exposes critical bottlenecks: multimodal feature heterogeneity, real-time requirements in dynamic scenarios, and hardware-specific operator redundancy. This work introduces a quantum-inspired geometric framework for neural operators that represents each operator by its normalized singular value spectrum on the Bloch hypersphere. We prove a tight spectral-to-functional equivalence theorem showing that vanishing Fubini--Study/Wasserstein-2 distance implies provable functional closeness, establishing the first rigorous foundation for cross-modal and cross-architecture operator substitutability. Based on this metric, we propose Quantum Metric-Driven Functional Redundancy Graphs (QM-FRG) and one-shot structured pruning. Controlled simulation validates the superiority of the proposed metric over magnitude and random baselines. An extensive experimental validation on large-scale multimodal transformers and domestic heterogeneous hardware (Huawei Ascend, Cambricon MLU, Kunlunxin) hardware is deferred to an extended journal version currently in preparation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.