Smol-GS: Compact Representations for Abstract 3D Gaussian Splatting (2512.00850v1)
Abstract: We present Smol-GS, a novel method for learning compact representations for 3D Gaussian Splatting (3DGS). Our approach learns highly efficient encodings in 3D space that integrate both spatial and semantic information. The model captures the coordinates of the splats through a recursive voxel hierarchy, while splat-wise features store abstracted cues, including color, opacity, transformation, and material properties. This design allows the model to compress 3D scenes by orders of magnitude without loss of flexibility. Smol-GS achieves state-of-the-art compression on standard benchmarks while maintaining high rendering quality. Beyond visual fidelity, the discrete representations could potentially serve as a foundation for downstream tasks such as navigation, planning, and broader 3D scene understanding.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.