Papers
Topics
Authors
Recent
2000 character limit reached

ARCADIA: Scalable Causal Discovery for Corporate Bankruptcy Analysis Using Agentic AI (2512.00839v1)

Published 30 Nov 2025 in cs.AI, stat.CO, and stat.ME

Abstract: This paper introduces ARCADIA, an agentic AI framework for causal discovery that integrates large-language-model reasoning with statistical diagnostics to construct valid, temporally coherent causal structures. Unlike traditional algorithms, ARCADIA iteratively refines candidate DAGs through constraint-guided prompting and causal-validity feedback, leading to stable and interpretable models for real-world high-stakes domains. Experiments on corporate bankruptcy data show that ARCADIA produces more reliable causal graphs than NOTEARS, GOLEM, and DirectLiNGAM while offering a fully explainable, intervention-ready pipeline. The framework advances AI by demonstrating how agentic LLMs can participate in autonomous scientific modeling and structured causal inference.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.