Papers
Topics
Authors
Recent
2000 character limit reached

SHRAG: AFrameworkfor Combining Human-Inspired Search with RAG

Published 30 Nov 2025 in cs.IR, cs.AI, and cs.DL | (2512.00772v1)

Abstract: Retrieval-Augmented Generation (RAG) is gaining recognition as one of the key technological axes for next generation information retrieval, owing to its ability to mitigate the hallucination phenomenon in LLMsand effectively incorporate up-to-date information. However, specialized expertise is necessary to construct ahigh-quality retrieval system independently; moreover, RAGdemonstratesrelativelyslowerprocessing speeds compared to conventional pure retrieval systems because it involves both retrieval and generation stages. Accordingly, this study proposes SHRAG, a novel framework designed to facilitate the seamless integration of Information Retrieval and RAG while simultaneously securing precise retrieval performance. SHRAG utilizes a LLM as a Query Strategist to automatically transform unstructured natural language queries into logically structured search queries, subsequently performing Boolean retrieval to emulate the search process of an expert human searcher. Furthermore, it incorporates multilingual query expansion and a multilingual embedding model, enabling it to perform efficient cross-lingual question answering within the multilingual dataset environment of the ScienceON Challenge. Experimental results demonstrate that the proposed method, combining logical retrieval capabilities and generative reasoning, can significantly enhance the accuracy and reliability of RAG systems. Furthermore, SHRAG movesbeyondconventionaldocument-centric retrieval methods, presenting the potential for a new search paradigm capable of providing direct and reliable responses to queries.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.