Papers
Topics
Authors
Recent
2000 character limit reached

Nonlinear instability of rolls in the 2-dimensional generalized Swift-Hohenberg equation (2512.00764v1)

Published 30 Nov 2025 in math.AP

Abstract: Within the framework developed in \cite{Gr, JLL, RT1}, we rigorously establish the nonlinear instability of roll solutions to the two-dimensional generalized Swift-Hohenberg equation (gSHE). Our analysis is based on spectral information near the maximally unstable Bloch mode, combined with precise semigroup estimates. We construct a certain class of small initial perturbations that grow in time and cause the solution to deviate from the underlying roll solution within a finite time. This result provides a clear transition from spectral to nonlinear instability in a genuinely two-dimensional setting, where the Bloch parameter $σ$ ranges over an unbounded domain.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.