Papers
Topics
Authors
Recent
2000 character limit reached

Probing the "Psyche'' of Large Reasoning Models: Understanding Through a Human Lens (2512.00729v1)

Published 30 Nov 2025 in cs.AI and cs.CL

Abstract: Large reasoning models (LRMs) have garnered significant attention from researchers owing to their exceptional capability in addressing complex tasks. Motivated by the observed human-like behaviors in their reasoning processes, this paper introduces a comprehensive taxonomy to characterize atomic reasoning steps and probe the psyche'' of LRM intelligence. Specifically, it comprises five groups and seventeen categories derived from human mental processes, thereby grounding the understanding of LRMs in an interdisciplinary perspective. The taxonomy is then applied for an in-depth understanding of current LRMs, resulting in a distinct labeled dataset that comprises 277,534 atomic reasoning steps. Using this resource, we analyze contemporary LRMs and distill several actionable takeaways for improving training and post-training of reasoning models. Notably, our analysis reveals that prevailing post-answerdouble-checks'' (self-monitoring evaluations) are largely superficial and rarely yield substantive revisions. Thus, incentivizing comprehensive multi-step reflection, rather than simple self-monitoring, may offer a more effective path forward. To complement the taxonomy, an automatic annotation framework, named CAPO, is proposed to leverage LLMs for generating the taxonomy-based annotations. Experimental results demonstrate that CAPO achieves higher consistency with human experts compared to baselines, facilitating a scalable and comprehensive analysis of LRMs from a human cognitive perspective. Together, the taxonomy, CAPO, and the derived insights provide a principled, scalable path toward understanding and advancing LRM reasoning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube