Papers
Topics
Authors
Recent
2000 character limit reached

TrajDiff: End-to-end Autonomous Driving without Perception Annotation

Published 30 Nov 2025 in cs.CV and cs.RO | (2512.00723v1)

Abstract: End-to-end autonomous driving systems directly generate driving policies from raw sensor inputs. While these systems can extract effective environmental features for planning, relying on auxiliary perception tasks, developing perception annotation-free planning paradigms has become increasingly critical due to the high cost of manual perception annotation. In this work, we propose TrajDiff, a Trajectory-oriented BEV Conditioned Diffusion framework that establishes a fully perception annotation-free generative method for end-to-end autonomous driving. TrajDiff requires only raw sensor inputs and future trajectory, constructing Gaussian BEV heatmap targets that inherently capture driving modalities. We design a simple yet effective trajectory-oriented BEV encoder to extract the TrajBEV feature without perceptual supervision. Furthermore, we introduce Trajectory-oriented BEV Diffusion Transformer (TB-DiT), which leverages ego-state information and the predicted TrajBEV features to directly generate diverse yet plausible trajectories, eliminating the need for handcrafted motion priors. Beyond architectural innovations, TrajDiff enables exploration of data scaling benefits in the annotation-free setting. Evaluated on the NAVSIM benchmark, TrajDiff achieves 87.5 PDMS, establishing state-of-the-art performance among all annotation-free methods. With data scaling, it further improves to 88.5 PDMS, which is comparable to advanced perception-based approaches. Our code and model will be made publicly available.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.