Papers
Topics
Authors
Recent
Search
2000 character limit reached

RS-ISRefiner: Towards Better Adapting Vision Foundation Models for Interactive Segmentation of Remote Sensing Images

Published 30 Nov 2025 in cs.CV | (2512.00718v1)

Abstract: Interactive image segmentation(IIS) plays a critical role in generating precise annotations for remote sensing imagery, where objects often exhibit scale variations, irregular boundaries and complex backgrounds. However, existing IIS methods, primarily designed for natural images, struggle to generalize to remote sensing domains due to limited annotated data and computational overhead. To address these challenges, we proposed RS-ISRefiner, a novel click-based IIS framework tailored for remote sensing images. The framework employs an adapter-based tuning strategy that preserves the general representations of Vision Foundation Models while enabling efficient learning of remote sensing-specific spatial and boundary characteristics. A hybrid attention mechanism integrating convolutional local modeling with Transformer-based global reasoning enhances robustness against scale diversity and scene complexity. Furthermore, an improved probability map modulation scheme effectively incorporates historical user interactions, yielding more stable iterative refinement and higher boundary fidelity. Comprehensive experiments on six remote sensing datasets, including iSAID, ISPRS Potsdam, SandBar, NWPU, LoveDA Urban and WHUBuilding, demonstrate that RS-ISRefiner consistently outperforms state-of-the-art IIS methods in terms of segmentation accuracy, efficiency and interaction cost. These results confirm the effectiveness and generalizability of our framework, making it highly suitable for high-quality instance segmentation in practical remote sensing scenarios.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.