Papers
Topics
Authors
Recent
2000 character limit reached

When Human Preferences Flip: An Instance-Dependent Robust Loss for RLHF (2512.00709v1)

Published 30 Nov 2025 in cs.AI

Abstract: Quality of datasets plays an important role in LLM alignment. In collecting human feedback, however, preference flipping is ubiquitous and causes corruption in data annotation; the issue necessitates the alignment algorithms with improved robustness against potential flipped pairs. To this end, this paper introduces a Flipping-Aware Direct Preference Optimization (FA-DPO) algorithm tailored to preference flipping from a reinforcement learning with human feedback (RLHF) perspective. We dissect the inherent human intention model and the preference flipping mechanism introduced by external factors as two distinct stages; in the latter, we introduce an instance-dependent flipping probability on the basis of the Bradley-Terry (BT) model. Further, by leveraging features relevant to preference annotation, we capture uncertainty in judgments and model preference flipping patterns. In practice, we design a simple yet efficient iterative optimization algorithm compatible with the original RLHF and DPO algorithms. In our experiments, we investigate the instance-dependent preference flipping model under multiple circumstances for evaluation of our proposed method, as well as other baseline methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.