Papers
Topics
Authors
Recent
2000 character limit reached

Active Learning of Fractional-Order Viscoelastic Model Parameters for Realistic Haptic Rendering (2512.00667v1)

Published 29 Nov 2025 in eess.SY and cs.RO

Abstract: Effective medical simulators necessitate realistic haptic rendering of biological tissues that display viscoelastic material properties, such as creep and stress relaxation. Fractional-order models provide an effective means of describing intrinsically time-dependent viscoelastic dynamics with few parameters, as these models can naturally capture memory effects. However, due to the unintuitive frequency-dependent coupling between the order of the fractional element and the other parameters, determining appropriate parameters for fractional-order models that yield high perceived realism remains a significant challenge. In this study, we propose a systematic means of determining the parameters of fractional-order viscoelastic models that optimizes the perceived realism of haptic rendering across general populations. First, we demonstrate that the parameters of fractional-order models can be effectively optimized through active learning, via qualitative feedback-based human-in-the-loop~(HiL) optimizations, to ensure consistently high realism ratings for each individual. Second, we propose a rigorous method to combine HiL optimization results to form an aggregate perceptual map trained on the entire dataset and demonstrate the selection of population-level optimal parameters from this representation that are broadly perceived as realistic across general populations. Finally, we provide evidence of the effectiveness of the generalized fractional-order viscoelastic model parameters by characterizing their perceived realism through human-subject experiments. Overall, generalized fractional-order viscoelastic models established through the proposed HiL optimization and aggregation approach possess the potential to significantly improve the sim-to-real transition performance of medical training simulators.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.