Papers
Topics
Authors
Recent
2000 character limit reached

Stable Voting and the Splitting of Cycles (2512.00616v1)

Published 29 Nov 2025 in cs.GT, cs.AI, and econ.TH

Abstract: Algorithms for resolving majority cycles in preference aggregation have been studied extensively in computational social choice. Several sophisticated cycle-resolving methods, including Tideman's Ranked Pairs, Schulze's Beat Path, and Heitzig's River, are refinements of the Split Cycle (SC) method that resolves majority cycles by discarding the weakest majority victories in each cycle. Recently, Holliday and Pacuit proposed a new refinement of Split Cycle, dubbed Stable Voting, and a simplification thereof, called Simple Stable Voting (SSV). They conjectured that SSV is a refinement of SC whenever no two majority victories are of the same size. In this paper, we prove the conjecture up to 6 alternatives and refute it for more than 6 alternatives. While our proof of the conjecture for up to 5 alternatives uses traditional mathematical reasoning, our 6-alternative proof and 7-alternative counterexample were obtained with the use of SAT solving. The SAT encoding underlying this proof and counterexample is applicable far beyond SC and SSV: it can be used to test properties of any voting method whose choice of winners depends only on the ordering of margins of victory by size.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.