Papers
Topics
Authors
Recent
2000 character limit reached

LAP: Fast LAtent Diffusion Planner with Fine-Grained Feature Distillation for Autonomous Driving (2512.00470v1)

Published 29 Nov 2025 in cs.RO

Abstract: Diffusion models have demonstrated strong capabilities for modeling human-like driving behaviors in autonomous driving, but their iterative sampling process induces substantial latency, and operating directly on raw trajectory points forces the model to spend capacity on low-level kinematics, rather than high-level multi-modal semantics. To address these limitations, we propose LAtent Planner (LAP), a framework that plans in a VAE-learned latent space that disentangles high-level intents from low-level kinematics, enabling our planner to capture rich, multi-modal driving strategies. We further introduce a fine-grained feature distillation mechanism to guide a better interaction and fusion between the high-level semantic planning space and the vectorized scene context. Notably, LAP can produce high-quality plans in one single denoising step, substantially reducing computational overhead. Through extensive evaluations on the large-scale nuPlan benchmark, LAP achieves state-of-the-art closed-loop performance among learning-based planning methods, while demonstrating an inference speed-up of at most 10 times over previous SOTA approaches.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.