Papers
Topics
Authors
Recent
2000 character limit reached

Mitigating the Threshold Priming Effect in Large Language Model-Based Relevance Judgments via Personality Infusing (2512.00390v1)

Published 29 Nov 2025 in cs.CL and cs.IR

Abstract: Recent research has explored LLMs as scalable tools for relevance labeling, but studies indicate they are susceptible to priming effects, where prior relevance judgments influence later ones. Although psychological theories link personality traits to such biases, it is unclear whether simulated personalities in LLMs exhibit similar effects. We investigate how Big Five personality profiles in LLMs influence priming in relevance labeling, using multiple LLMs on TREC 2021 and 2022 Deep Learning Track datasets. Our results show that certain profiles, such as High Openness and Low Neuroticism, consistently reduce priming susceptibility. Additionally, the most effective personality in mitigating priming may vary across models and task types. Based on these findings, we propose personality prompting as a method to mitigate threshold priming, connecting psychological evidence with LLM-based evaluation practices.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.