Layer Probing Improves Kinase Functional Prediction with Protein Language Models (2512.00376v1)
Abstract: Protein LLMs (PLMs) have transformed sequence-based protein analysis, yet most applications rely only on final-layer embeddings, which may overlook biologically meaningful information encoded in earlier layers. We systematically evaluate all 33 layers of ESM-2 for kinase functional prediction using both unsupervised clustering and supervised classification. We show that mid-to-late transformer layers (layers 20-33) outperform the final layer by 32 percent in unsupervised Adjusted Rand Index and improve homology-aware supervised accuracy to 75.7 percent. Domain-level extraction, calibrated probability estimates, and a reproducible benchmarking pipeline further strengthen reliability. Our results demonstrate that transformer depth contains functionally distinct biological signals and that principled layer selection significantly improves kinase function prediction.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.