Papers
Topics
Authors
Recent
2000 character limit reached

DPNet: Doppler LiDAR Motion Planning for Highly-Dynamic Environments (2512.00375v1)

Published 29 Nov 2025 in cs.RO

Abstract: Existing motion planning methods often struggle with rapid-motion obstacles due to an insufficient understanding of environmental changes. To address this limitation, we propose integrating motion planners with Doppler LiDARs which provide not only ranging measurements but also instantaneous point velocities. However, this integration is nontrivial due to the dual requirements of high accuracy and high frequency. To this end, we introduce Doppler Planning Network (DPNet), which tracks and reacts to rapid obstacles using Doppler model-based learning. Particularly, we first propose a Doppler Kalman neural network (D-KalmanNet) to track the future states of obstacles under partially observable Gaussian state space model. We then leverage the estimated motions to construct a Doppler-tuned model predictive control (DT-MPC) framework for ego-motion planning, enabling runtime auto-tuning of the controller parameters. These two model-based learners allow DPNet to maintain lightweight while learning fast environmental changes using minimum data, and achieve both high frequency and high accuracy in tracking and planning. Experiments on both high-fidelity simulator and real-world datasets demonstrate the superiority of DPNet over extensive benchmark schemes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.