Papers
Topics
Authors
Recent
2000 character limit reached

Teleportation-Based Defenses for Privacy in Approximate Machine Unlearning (2512.00272v1)

Published 29 Nov 2025 in cs.LG, cs.AI, and cs.CR

Abstract: Approximate machine unlearning aims to efficiently remove the influence of specific data points from a trained model, offering a practical alternative to full retraining. However, it introduces privacy risks: an adversary with access to pre- and post-unlearning models can exploit their differences for membership inference or data reconstruction. We show these vulnerabilities arise from two factors: large gradient norms of forget-set samples and the close proximity of unlearned parameters to the original model. To demonstrate their severity, we propose unlearning-specific membership inference and reconstruction attacks, showing that several state-of-the-art methods (e.g., NGP, SCRUB) remain vulnerable. To mitigate this leakage, we introduce WARP, a plug-and-play teleportation defense that leverages neural network symmetries to reduce forget-set gradient energy and increase parameter dispersion while preserving predictions. This reparameterization obfuscates the signal of forgotten data, making it harder for attackers to distinguish forgotten samples from non-members or recover them via reconstruction. Across six unlearning algorithms, our approach achieves consistent privacy gains, reducing adversarial advantage (AUC) by up to 64% in black-box and 92% in white-box settings, while maintaining accuracy on retained data. These results highlight teleportation as a general tool for reducing attack success in approximate unlearning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.