Comparative Evaluation of Generative AI Models for Chest Radiograph Report Generation in the Emergency Department (2512.00271v1)
Abstract: Purpose: To benchmark open-source or commercial medical image-specific VLMs against real-world radiologist-written reports. Methods: This retrospective study included adult patients who presented to the emergency department between January 2022 and April 2025 and underwent same-day CXR and CT for febrile or respiratory symptoms. Reports from five VLMs (AIRead, Lingshu, MAIRA-2, MedGemma, and MedVersa) and radiologist-written reports were randomly presented and blindly evaluated by three thoracic radiologists using four criteria: RADPEER, clinical acceptability, hallucination, and language clarity. Comparative performance was assessed using generalized linear mixed models, with radiologist-written reports treated as the reference. Finding-level analyses were also performed with CT as the reference. Results: A total of 478 patients (median age, 67 years [interquartile range, 50-78]; 282 men [59.0%]) were included. AIRead demonstrated the lowest RADPEER 3b rate (5.3% [76/1434] vs. radiologists 13.9% [200/1434]; P<.001), whereas other VLMs showed higher disagreement rates (16.8-43.0%; P<.05). Clinical acceptability was the highest with AIRead (84.5% [1212/1434] vs. radiologists 74.3% [1065/1434]; P<.001), while other VLMs performed worse (41.1-71.4%; P<.05). Hallucinations were rare with AIRead, comparable to radiologists (0.3% [4/1425]) vs. 0.1% [1/1425]; P=.21), but frequent with other models (5.4-17.4%; P<.05). Language clarity was higher with AIRead (82.9% [1189/1434]), Lingshu (88.0% [1262/1434]), and MedVersa (88.4% [1268/1434]) compared with radiologists (78.1% [1120/1434]; P<.05). Sensitivity varied substantially across VLMs for the common findings: AIRead, 15.5-86.7%; Lingshu, 2.4-86.7%; MAIRA-2, 6.0-72.0%; MedGemma, 4.8-76.7%; and MedVersa, 20.2-69.3%. Conclusion: Medical VLMs for CXR report generation exhibited variable performance in report quality and diagnostic measures.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.