Scalable and Interpretable Scientific Discovery via Sparse Variational Gaussian Process Kolmogorov-Arnold Networks (SVGP KAN) (2512.00260v1)
Abstract: Kolmogorov-Arnold Networks (KANs) offer a promising alternative to Multi-Layer Perceptron (MLP) by placing learnable univariate functions on network edges, enhancing interpretability. However, standard KANs lack probabilistic outputs, limiting their utility in applications requiring uncertainty quantification. While recent Gaussian Process (GP) extensions to KANs address this, they utilize exact inference methods that scale cubically with data size N, restricting their application to smaller datasets. We introduce the Sparse Variational GP-KAN (SVGP-KAN), an architecture that integrates sparse variational inference with the KAN topology. By employing $M$ inducing points and analytic moment matching, our method reduces computational complexity from $O(N3)$ to $O(NM2)$ or linear in sample size, enabling the application of probabilistic KANs to larger scientific datasets. Furthermore, we demonstrate that integrating a permutation-based importance analysis enables the network to function as a framework for structural identification, identifying relevant inputs and classifying functional relationships.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.