Papers
Topics
Authors
Recent
2000 character limit reached

A Hierarchical Computer Vision Pipeline for Physiological Data Extraction from Bedside Monitors

Published 28 Nov 2025 in cs.CV | (2511.23355v1)

Abstract: In many low-resource healthcare settings, bedside monitors remain standalone legacy devices without network connectivity, creating a persistent interoperability gap that prevents seamless integration of physiological data into electronic health record (EHR) systems. To address this challenge without requiring costly hardware replacement, we present a computer vision-based pipeline for the automated capture and digitisation of vital sign data directly from bedside monitor screens. Our method employs a hierarchical detection framework combining YOLOv11 for accurate monitor and region of interest (ROI) localisation with PaddleOCR for robust text extraction. To enhance reliability across variable camera angles and lighting conditions, a geometric rectification module standardizes the screen perspective before character recognition. We evaluated the system on a dataset of 6,498 images collected from open-source corpora and real-world intensive care units in Vietnam. The model achieved a mean Average Precision (mAP@50-95) of 99.5% for monitor detection and 91.5% for vital sign ROI localisation. The end-to-end extraction accuracy exceeded 98.9% for core physiological parameters, including heart rate, oxygen saturation SpO2, and arterial blood pressure. These results demonstrate that a lightweight, camera-based approach can reliably transform unstructured information from screen captures into structured digital data, providing a practical and scalable pathway to improve information accessibility and clinical documentation in low-resource settings.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.