Asymptotic Theory and Phase Transitions for Variable Importance in Quantile Regression Forests (2511.23212v1)
Abstract: Quantile Regression Forests (QRF) are widely used for non-parametric conditional quantile estimation, yet statistical inference for variable importance measures remains challenging due to the non-smoothness of the loss function and the complex bias-variance trade-off. In this paper, we develop a asymptotic theory for variable importance defined as the difference in pinball loss risks. We first establish the asymptotic normality of the QRF estimator by handling the non-differentiable pinball loss via Knight's identity. Second, we uncover a "phase transition" phenomenon governed by the subsampling rate $β$ (where $s \asymp nβ$). We prove that in the bias-dominated regime ($β\ge 1/2$), which corresponds to large subsample sizes typically favored in practice to maximize predictive accuracy, standard inference breaks down as the estimator converges to a deterministic bias constant rather than a zero-mean normal distribution. Finally, we derive the explicit analytic form of this asymptotic bias and discuss the theoretical feasibility of restoring valid inference via analytic bias correction. Our results highlight a fundamental trade-off between predictive performance and inferential validity, providing a theoretical foundation for understanding the intrinsic limitations of random forest inference in high-dimensional settings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.