Papers
Topics
Authors
Recent
2000 character limit reached

FEANEL: A Benchmark for Fine-Grained Error Analysis in K-12 English Writing (2511.22883v1)

Published 28 Nov 2025 in cs.CL

Abstract: LLMs have transformed artificial intelligence, offering profound opportunities for educational applications. However, their ability to provide fine-grained educational feedback for K-12 English writing remains underexplored. In this paper, we challenge the error analysis and pedagogical skills of LLMs by introducing the problem of Fine-grained Error Analysis for English Learners and present the Fine-grained Error ANalysis for English Learners (FEANEL) Benchmark. The benchmark comprises 1,000 essays written by elementary and secondary school students, and a well-developed English writing error taxonomy. Each error is annotated by language education experts and categorized by type, severity, and explanatory feedback, using a part-of-speech-based taxonomy they co-developed. We evaluate state-of-the-art LLMs on the FEANEL Benchmark to explore their error analysis and pedagogical abilities. Experimental results reveal significant gaps in current LLMs' ability to perform fine-grained error analysis, highlighting the need for advancements in particular methods for educational applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.