Papers
Topics
Authors
Recent
2000 character limit reached

Serving Heterogeneous LoRA Adapters in Distributed LLM Inference Systems (2511.22880v1)

Published 28 Nov 2025 in cs.DC, cs.AI, and cs.LG

Abstract: Low-Rank Adaptation (LoRA) has become the de facto method for parameter-efficient fine-tuning of LLMs, enabling rapid adaptation to diverse domains. In production, LoRA-based models are served at scale, creating multi-tenant environments with hundreds of adapters sharing a base model. However, state-of-the-art serving systems co-batch heterogeneous adapters without accounting for rank (size) variability, leading to severe performance skew, which ultimately requires adding more GPUs to satisfy service-level objectives (SLOs). Existing optimizations, focused on loading, caching, and kernel execution, ignore this heterogeneity, leaving GPU resources underutilized. We present LoRAServe, a workload-aware dynamic adapter placement and routing framework designed to tame rank diversity in LoRA serving. By dynamically rebalancing adapters across GPUs and leveraging GPU Direct RDMA for remote access, LoRAServe maximizes throughput and minimizes tail latency under real-world workload drift. Evaluations on production traces from Company X show that LoRAServe elicits up to 2$\times$ higher throughput, up to 9$\times$ lower TTFT, while using up to 50% fewer GPUs under SLO constraints compared to state-of-the-art systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.