Escaping Barren Plateaus in Variational Quantum Algorithms Using Negative Learning Rate in Quantum Internet of Things (2511.22861v1)
Abstract: Variational Quantum Algorithms (VQAs) are becoming the primary computational primitive for next-generation quantum computers, particularly those embedded as resource-constrained accelerators in the emerging Quantum Internet of Things (QIoT). However, under such device-constrained execution conditions, the scalability of learning is severely limited by barren plateaus, where gradients collapse to zero and training stalls. This poses a practical challenge to delivering VQA-enabled intelligence on QIoT endpoints, which often have few qubits, constrained shot budgets, and strict latency requirements. In this paper, we present a novel approach for escaping barren plateaus by including negative learning rates into the optimization process in QIoT devices. Our method introduces controlled instability into model training by switching between positive and negative learning phases, allowing recovery of significant gradients and exploring flatter areas in the loss landscape. We theoretically evaluate the effect of negative learning on gradient variance and propose conditions under which it helps escape from barren zones. The experimental findings on typical VQA benchmarks show consistent improvements in both convergence and simulation results over traditional optimizers. By escaping barren plateaus, our approach leads to a novel pathway for robust optimization in quantum-classical hybrid models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.