MammoRGB: Dual-View Mammogram Synthesis Using Denoising Diffusion Probabilistic Models (2511.22759v1)
Abstract: Purpose: This study aims to develop and evaluate a three channel denoising diffusion probabilistic model (DDPM) for synthesizing single breast dual view mammograms and to assess the impact of channel representations on image fidelity and cross view consistency. Materials and Methods: A pretrained three channel DDPM, sourced from Hugging Face, was fine tuned on a private dataset of 11020 screening mammograms to generate paired craniocaudal (CC) and mediolateral oblique (MLO) views. Three third channel encodings of the CC and MLO views were evaluated: sum, absolute difference, and zero channel. Each model produced 500 synthetic image pairs. Quantitative assessment involved breast mask segmentation using Intersection over Union (IoU) and Dice Similarity Coefficient (DSC), with distributional comparisons against 2500 real pairs using Earth Movers Distance (EMD) and Kolmogorov Smirnov (KS) tests. Qualitative evaluation included a visual Turing test by a non expert radiologist to assess cross view consistency and artifacts. Results: Synthetic mammograms showed IoU and DSC distributions comparable to real images, with EMD and KS values (0.020 and 0.077 respectively). Models using sum or absolute difference encodings outperformed others in IoU and DSC (p < 0.001), though distributions remained broadly similar. Generated CC and MLO views maintained cross view consistency, with 6 to 8 percent of synthetic images exhibiting artifacts consistent with those in the training data. Conclusion: Three channel DDPMs can generate realistic and anatomically consistent dual view mammograms with promising applications in dataset augmentation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.