Papers
Topics
Authors
Recent
2000 character limit reached

All Centers Are at most a Few Tokens Apart: Knowledge Distillation with Domain Invariant Prompt Tuning (2511.22739v1)

Published 27 Nov 2025 in cs.CV and cs.AI

Abstract: Domain generalization is critical in computational pathology (CPath) due to inherent domain shifts caused by variations in staining protocols, scanner devices, and imaging settings across clinical centers. Vision-LLMs (VLMs), such as PLIP-a pathology-tuned CLIP-trained on image-text pairs across diverse domains, serve as strong knowledge distillation sources. However, their zero-shot performance with predefined prompts remains limited due to sensitivity to prompt variations. Moreover, unlike natural images, histopathology centers lack semantic descriptors (e.g., 'sketch'), making it difficult to define domain-specific prompts for clinical centers. This requires a data-driven approach for learning domain-specific and ultimately class-generic continuous prompts. We propose Domain Invariant Prompt Tuning (DIPT) for knowledge distillation process, a novel step that learns multiple input tokens for each domain. These tokens are trained separately for each domain and are averaged across domains, leading to domain-invariant prompts. Our student model then distills knowledge from PLIP's text encoder by leveraging the prompts learned by DIPT. This leads to alignment of visual features with domain-invariant embeddings, enhancing generalization by training on multiple domains. Our method adds a significant improvement in average F1-score to existing state-of-the-art (SOTA) knowledge distillation approaches in domain generalization with histopathology datasets. This work helps the way of deploying robust CPath models in real-world clinical problems with heterogeneous data sources.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.