Papers
Topics
Authors
Recent
2000 character limit reached

Where to Measure: Epistemic Uncertainty-Based Sensor Placement with ConvCNPs (2511.22567v1)

Published 27 Nov 2025 in cs.LG and cs.AI

Abstract: Accurate sensor placement is critical for modeling spatio-temporal systems such as environmental and climate processes. Neural Processes (NPs), particularly Convolutional Conditional Neural Processes (ConvCNPs), provide scalable probabilistic models with uncertainty estimates, making them well-suited for data-driven sensor placement. However, existing approaches rely on total predictive uncertainty, which conflates epistemic and aleatoric components, that may lead to suboptimal sensor selection in ambiguous regions. To address this, we propose expected reduction in epistemic uncertainty as a new acquisition function for sensor placement. To enable this, we extend ConvCNPs with a Mixture Density Networks (MDNs) output head for epistemic uncertainty estimation. Preliminary results suggest that epistemic uncertainty driven sensor placement more effectively reduces model error than approaches based on overall uncertainty.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.