Papers
Topics
Authors
Recent
2000 character limit reached

Privacy-preserving fall detection at the edge using Sony IMX636 event-based vision sensor and Intel Loihi 2 neuromorphic processor (2511.22554v1)

Published 27 Nov 2025 in cs.NE

Abstract: Fall detection for elderly care using non-invasive vision-based systems remains an important yet unsolved problem. Driven by strict privacy requirements, inference must run at the edge of the vision sensor, demanding robust, real-time, and always-on perception under tight hardware constraints. To address these challenges, we propose a neuromorphic fall detection system that integrates the Sony IMX636 event-based vision sensor with the Intel Loihi 2 neuromorphic processor via a dedicated FPGA-based interface, leveraging the sparsity of event data together with near-memory asynchronous processing. Using a newly recorded dataset under diverse environmental conditions, we explore the design space of sparse neural networks deployable on a single Loihi 2 chip and analyze the tradeoffs between detection F1 score and computational cost. Notably, on the Pareto front, our LIF-based convolutional SNN with graded spikes achieves the highest computational efficiency, reaching a 55x synaptic operations sparsity for an F1 score of 58%. The LIF with graded spikes shows a gain of 6% in F1 score with 5x less operations compared to binary spikes. Furthermore, our MCUNet feature extractor with patched inference, combined with the S4D state space model, achieves the highest F1 score of 84% with a synaptic operations sparsity of 2x and a total power consumption of 90 mW on Loihi 2. Overall, our smart security camera proof-of-concept highlights the potential of integrating neuromorphic sensing and processing for edge AI applications where latency, energy consumption, and privacy are critical.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.