A Computable Game-Theoretic Framework for Multi-Agent Theory of Mind (2511.22536v1)
Abstract: Originating in psychology, $\textit{Theory of Mind}$ (ToM) has attracted significant attention across multiple research communities, especially logic, economics, and robotics. Most psychological work does not aim at formalizing those central concepts, namely $\textit{goals}$, $\textit{intentions}$, and $\textit{beliefs}$, to automate a ToM-based computational process, which, by contrast, has been extensively studied by logicians. In this paper, we offer a different perspective by proposing a computational framework viewed through the lens of game theory. On the one hand, the framework prescribes how to make boudedly rational decisions while maintaining a theory of mind about others (and recursively, each of the others holding a theory of mind about the rest); on the other hand, it employs statistical techniques and approximate solutions to retain computability of the inherent computational problem.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.