Papers
Topics
Authors
Recent
2000 character limit reached

DocVAL: Validated Chain-of-Thought Distillation for Grounded Document VQA

Published 27 Nov 2025 in cs.CV and cs.AI | (2511.22521v1)

Abstract: Document visual question answering (DocVQA) requires models to jointly reason over textual content and spatial layout, yet current systems exhibit a sharp accuracy--efficiency trade-off: large teacher models achieve strong grounding but are too expensive for deployment, while compact students suffer substantial drops in localization performance. We propose DocVAL, a validated chain-of-thought distillation framework that transfers the spatial reasoning ability of a large teacher into a deployable student VLM through three key components: (1) teacher supervision with validation-time text detection to filter and denoise training signals, (2) a multi-module validator (VAL) that enforces answer correctness and geometric consistency while producing fine-grained, pixel-level error feedback, and (3) a two-stage student training scheme that first learns from validated CoT traces and then undergoes iterative refinement driven by VAL feedback. Our student (Gemma-3 12B) achieves 91.4\% ANLS and 82.4\% mAP on DocVQA as a pure VLM requiring no text detection or OCR at inference. Extensive ablations demonstrate that validated feedback contributes 6.3 mAP gain and iterative refinement accounts for 9.7 mAP improvement. We release 95k high-quality, validator-verified CoT traces to advance spatial reasoning research in document understanding.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.