Exposing Vulnerabilities in RL: A Novel Stealthy Backdoor Attack through Reward Poisoning (2511.22415v1)
Abstract: Reinforcement learning (RL) has achieved remarkable success across diverse domains, enabling autonomous systems to learn and adapt to dynamic environments by optimizing a reward function. However, this reliance on reward signals creates a significant security vulnerability. In this paper, we study a stealthy backdoor attack that manipulates an agent's policy by poisoning its reward signals. The effectiveness of this attack highlights a critical threat to the integrity of deployed RL systems and calls for urgent defenses against training-time manipulation. We evaluate the attack across classic control and MuJoCo environments. The backdoored agent remains highly stealthy in Hopper and Walker2D, with minimal performance drops of only 2.18 % and 4.59 % under non-triggered scenarios, while achieving strong attack efficacy with up to 82.31% and 71.27% declines under trigger conditions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.