Papers
Topics
Authors
Recent
Search
2000 character limit reached

Test Time Training for AC Power Flow Surrogates via Physics and Operational Constraint Refinement

Published 27 Nov 2025 in cs.LG, cs.AI, and eess.SY | (2511.22343v1)

Abstract: Power Flow (PF) calculation based on ML techniques offer significant computational advantages over traditional numerical methods but often struggle to maintain full physical consistency. This paper introduces a physics-informed test-time training (PI-TTT) framework that enhances the accuracy and feasibility of ML-based PF surrogates by enforcing AC power flow equalities and operational constraints directly at inference time. The proposed method performs a lightweight self-supervised refinement of the surrogate outputs through few gradient-based updates, enabling local adaptation to unseen operating conditions without requiring labeled data. Extensive experiments on the IEEE 14-, 118-, and 300-bus systems and the PEGASE 1354-bus network show that PI-TTT reduces power flow residuals and operational constraint violations by one to two orders of magnitude compared with purely ML-based models, while preserving their computational advantage. The results demonstrate that PI-TTT provides fast, accurate, and physically reliable predictions, representing a promising direction for scalable and physics-consistent learning in power system analysis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.