Papers
Topics
Authors
Recent
2000 character limit reached

Bridging 3D Deep Learning and Curation for Analysis and High-Quality Segmentation in Practice (2511.22236v1)

Published 27 Nov 2025 in cs.CV

Abstract: Accurate 3D microscopy image segmentation is critical for quantitative bioimage analysis but even state-of-the-art foundation models yield error-prone results. Therefore, manual curation is still widely used for either preparing high-quality training data or fixing errors before analysis. We present VessQC, an open-source tool for uncertainty-guided curation of large 3D microscopy segmentations. By integrating uncertainty maps, VessQC directs user attention to regions most likely containing biologically meaningful errors. In a preliminary user study uncertainty-guided correction significantly improved error detection recall from 67% to 94.0% (p=0.007) without a significant increase in total curation time. VessQC thus enables efficient, human-in-the-loop refinement of volumetric segmentations and bridges a key gap in real-world applications between uncertainty estimation and practical human-computer interaction. The software is freely available at github.com/MMV-Lab/VessQC.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.