Papers
Topics
Authors
Recent
2000 character limit reached

A Theoretically Grounded Hybrid Ensemble for Reliable Detection of LLM-Generated Text (2511.22153v1)

Published 27 Nov 2025 in cs.CL and cs.AI

Abstract: The rapid proliferation of LLMs has blurred the line between human and machine authorship, creating practical risks for academic integrity and information reliability. Existing text detectors typically rely on a single methodological paradigm and suffer from poor generalization and high false positive rates (FPR), especially on high-stakes academic text. We propose a theoretically grounded hybrid ensemble that systematically fuses three complementary detection paradigms: (i) a RoBERTa-based transformer classifier for deep semantic feature extraction, (ii) a GPT-2-based probabilistic detector using perturbation-induced likelihood curvature, and (iii) a statistical linguistic feature analyzer capturing stylometric patterns. The core novelty lies in an optimized weighted voting framework, where ensemble weights are learned on the probability simplex to maximize F1-score rather than set heuristically. We provide a bias-variance analysis and empirically demonstrate low inter-model correlation (rho ~ 0.35-0.42), a key condition for variance reduction. Evaluated on a large-scale, multigenerator corpus of 30,000 documents, our system achieves 94.2% accuracy and an AUC of 0.978, with a 35% relative reduction in false positives on academic text. This yields a more reliable and ethically responsible detector for real-world deployment in education and other high-stakes domains.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.