From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures (2511.22150v1)
Abstract: Studying how embeddings are organized in space not only enhances model interpretability but also uncovers factors that drive downstream task performance. In this paper, we present a comprehensive analysis of topological and geometric measures across a wide set of text embedding models and datasets. We find a high degree of redundancy among these measures and observe that individual metrics often fail to sufficiently differentiate embedding spaces. Building on these insights, we introduce Unified Topological Signatures (UTS), a holistic framework for characterizing embedding spaces. We show that UTS can predict model-specific properties and reveal similarities driven by model architecture. Further, we demonstrate the utility of our method by linking topological structure to ranking effectiveness and accurately predicting document retrievability. We find that a holistic, multi-attribute perspective is essential to understanding and leveraging the geometry of text embeddings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.