Papers
Topics
Authors
Recent
2000 character limit reached

Stacked Ensemble of Fine-Tuned CNNs for Knee Osteoarthritis Severity Grading (2511.22143v1)

Published 27 Nov 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Knee Osteoarthritis (KOA) is a musculoskeletal condition that can cause significant limitations and impairments in daily activities, especially among older individuals. To evaluate the severity of KOA, typically, X-ray images of the affected knee are analyzed, and a grade is assigned based on the Kellgren-Lawrence (KL) grading system, which classifies KOA severity into five levels, ranging from 0 to 4. This approach requires a high level of expertise and time and is susceptible to subjective interpretation, thereby introducing potential diagnostic inaccuracies. To address this problem a stacked ensemble model of fine-tuned Convolutional Neural Networks (CNNs) was developed for two classification tasks: a binary classifier for detecting the presence of KOA, and a multiclass classifier for precise grading across the KL spectrum. The proposed stacked ensemble model consists of a diverse set of pre-trained architectures, including MobileNetV2, You Only Look Once (YOLOv8), and DenseNet201 as base learners and Categorical Boosting (CatBoost) as the meta-learner. This proposed model had a balanced test accuracy of 73% in multiclass classification and 87.5% in binary classification, which is higher than previous works in extant literature.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.