Bridging the Modality Gap by Similarity Standardization with Pseudo-Positive Samples (2511.22141v1)
Abstract: Advances in vision-LLMs (VLMs) have enabled effective cross-modality retrieval. However, when both text and images exist in the database, similarity scores would differ in scale by modality. This phenomenon, known as the modality gap, hinders accurate retrieval. Most existing studies address this issue with manually labeled data, e.g., by fine-tuning VLMs on them. In this work, we propose a similarity standardization approach with pseudo data construction. We first compute the mean and variance of the similarity scores between each query and its paired data in text or image modality. Using these modality-specific statistics, we standardize all similarity scores to compare on a common scale across modalities. These statistics are calculated from pseudo pairs, which are constructed by retrieving the text and image candidates with the highest cosine similarity to each query. We evaluate our method across seven VLMs using two multi-modal QA benchmarks (MMQA and WebQA), where each question requires retrieving either text or image data. Our experimental results show that our method significantly improves retrieval performance, achieving average Recall@20 gains of 64% on MMQA and 28% on WebQA when the query and the target data belong to different modalities. Compared to E5-V, which addresses the modality gap through image captioning, we confirm that our method more effectively bridges the modality gap.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.