Papers
Topics
Authors
Recent
2000 character limit reached

GA2-CLIP: Generic Attribute Anchor for Efficient Prompt Tuningin Video-Language Models (2511.22125v1)

Published 27 Nov 2025 in cs.CV

Abstract: Visual and textual soft prompt tuning can effectively improve the adaptability of Vision-LLMs (VLMs) in downstream tasks. However, fine-tuning on video tasks impairs the model's generalization ability to unseen classes. Existing methods attempt to mitigate this forgetting effect by regularizing the gap between hand-crafted prompts and soft prompts, but this also weakens the learning ability of soft prompts. To address this challenge, we propose a plug-and-play coupling prompt learning framework to optimize the generalization performance of V-L models in video tasks, with the core motivation of mitigating semantic space narrowing during fine-tuning by introducing an externally supervised prompt. Specifically, for textual prompts, we introduce pre-trained prompts from other datasets as hard prompt tokens. These are concatenated with soft prompt tokens and coupled via a learnable mapping layer. This competitive prompting approach prevents the semantic space from overfitting to supervised categories. In addition, we introduce a set of well-designed irrelevant video sets and negative prompts as generic attribute anchors to maintain the generic relevance of the attributes in the pre-trained semantic space, thus preserving the generalization ability. Experiments on video tasks demonstrate that our method significantly outperforms state-of-the-art prompt tuning approaches across generalization benchmarks, particularly on base-to-new class prediction.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.