Papers
Topics
Authors
Recent
2000 character limit reached

Privacy-preserving formal concept analysis: A homomorphic encryption-based concept construction (2511.22117v1)

Published 27 Nov 2025 in cs.CR and cs.CC

Abstract: Formal Concept Analysis (FCA) is extensively used in knowledge extraction, cognitive concept learning, and data mining. However, its computational demands on large-scale datasets often require outsourcing to external computing services, raising concerns about the leakage of sensitive information. To address this challenge, we propose a novel approach to enhance data security and privacy in FCA-based computations. Specifically, we introduce a Privacy-preserving Formal Context Analysis (PFCA) framework that combines binary data representation with homomorphic encryption techniques. This method enables secure and efficient concept construction without revealing private data. Experimental results and security analysis confirm the effectiveness of our approach in preserving privacy while maintaining computational performance. These findings have important implications for privacy-preserving data mining and secure knowledge discovery in large-scale FCA applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.